Vorticity, Divergence, and Vertical Velocity in a Baroclinic Boundary Layer with a Linear Variation of the Geostrophic Wind
نویسنده
چکیده
The Ekman-Taylor problem for the planetary boundary layer is solved in the case of a thermal wind which varies linearly with height. The upper boundary condition is a vanishing ageostrophic wind, while the lower boundary condition is continuity of the stress vector across the interface between the planetary boundary layer and the surface layer. The latter condition is used to determine the magnitude and the direction of the wind at the bottom of the Ekman layer. Theoretical hodographs are compared with observed hodographs based on five years of ohservations from Ship N in the Pacific, giving fair agreement. The divergence, the vorticity, and the vertical velocity are calculated through the Ekman layer with emphasis on differences between the classical barotropic and the baroclinic cases; these differences are significant, especially in the vertical velocities as compared to the standard approximation. An extension of the present study to include thermal stratification is desirable.
منابع مشابه
Revealing the impact of changing land use of the annual spatiotemporal boundary layer height (Kermanshah Case Study)
Introduction Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is st...
متن کاملA Normal-Mode Approach to Jovian Atmospheric Dynamics
We propose a nonlinear, quasi-geostrophic, baroclinic model of Jovian atmospheric dynamics, in which vertical variations of velocity are represented by a truncated sum over a complete set of orthogonal functions obtained by a separation of variables of the linearized quasi-geostrophic potential vorticity quation. A set of equations for the time variation of the mode amplitudes in the nonlinear ...
متن کاملThe Vertical Structure of the Wind-driven Circulation
This thesis consists of three loosely related theoretical studies. In chapters 1 3 the physical mechanisms which determine the three dimensional structure of the currents in the Sverdrup interior of a wind-driven gyre are discussed. A variety of simple analytic models suggest that the subsurface geostrophic contours in a wind gyre are closed and so the flow in these regions is not determined by...
متن کاملThe Dynamic Role of Ridges in a #-plane
In this thesis, the dynamic role of bottom topography in a #3-plane channel is systematically studied in both linear homogeneous and stratified layer models in the presence of either wind stress (Chapters 2, 3, 4, and 6) or buoyancy forcing (Chapter 5). In these studies, the structure of the geostrophic contour plays a fundamental role, and the role of bottom topography is looked at from two di...
متن کاملPyrogenic vorticity from windward and lee slope fires
Research into dynamic bushfire behaviour conducted over the last few years has shown that bushfires burning on lee-facing slopes can exhibit atypical forms of propagation under extreme weather conditions. For instance, recent numerical simulations have indicated that pyrogenic vorticity (the curl of the velocity field) is a key driver of rapid lateral fire spread as a consequence, this type of ...
متن کامل